воскресенье, 12 июля 2015 г.

Существование Вселенной с обратным ходом времени показали на простом примере

Физики из Великобритании и Канады сообщили о том, что в результате Большого взрыва кроме нашей Вселенной могла возникнуть другая, где время идёт в обратном направлении. Результаты своих исследований авторы опубликовали в журнале Physical Review Letters.

Как правило, современные физические теории (уравнения, их описывающие) на фундаментальном уровне не предполагают выделенности направления времени. Однако начальные условия, накладываемые на их решения, задают направление распространения времени. Новое исследование ученых демонстрирует, что уже на простом физическом примере можно увидеть двунаправленное развитие во времени динамики системы.


Физики исследовали систему N массивных тел (N=1000), взаимодействующих согласно классическому закону тяготения Ньютона. Учёные предположили, что их полная энергия (кинетическая и потенциальная) и полный угловой момент равны нулю. Как показало компьютерное моделирование, в далёком будущем такая система должна распасться на слабо взаимодействующие подсистемы, состоящие из пар масс – элементов кеплеровской динамики.

Симметрия времени в эксперименте учёных нашла своё отражение в качественной симметрии вокруг центральной области изображения, в которой распределение частиц максимально равномерно. Направление времени, указанное стрелкой на оси, является условным (его можно поменять на противоположное).

Выбор направления времени можно связать с протеканием разрушения структуры через возникновение неоднородностей при минимальных размерах с последующим расширением и формированием структур в виде кеплеровских пар (на изображении они показаны в виде петель). Между тем внутренние наблюдатели, находящиеся на одной из центральных областей, считали бы такую динамику движением в прошлое.
Распределение масс в эксперименте учёных. 
Изображение: APS / Alan Stonebraker

Как показали учёные, глобально рассмотренная ими система симметрична во времени, однако локально она имеет стрелу времени. Для этого учёные ввели в рассмотрение параметр CS, который характеризует степень неоднородности и кластеризации системы.

Он имеет минимум при минимальном размере кластера и примерно равномерно растёт в обоих направлениях времени от этого минимума. Получается, что хотя глобально время симметрично, то локально – это не так. По словам исследователей, их вывод является новым, а направление времени не обязательно связывать с начальными условиями.

В классической физике время и трёхмерное пространство независимы. В квантовой механике время является параметром, тогда как координаты в трёхмерном пространстве допускают процедуру квантования – им может сопоставляться оператор, и они являются наблюдаемыми.

В релятивистском обобщении классической механики – специальной теории относительности (СТО) – время и собственно пространство связаны в единое четырёхмерное пространство-время и являются почти равноправными. Дальнейшее развитие эта концепция получает в квантовой теории поля, объединяющей СТО и квантовую механику, а также общей теории относительности (ОТО), являющейся распространением идей СТО на гравитационные явления.

В отличие от вышеперечисленных наук, в термодинамике существует выделенность направления времени (так называемая стрела времени). Это связано с протеканием процессов, которые уменьшают упорядоченность системы (увеличивают энтропию): направление времени совпадает с направлением возрастания энтропии.

В статистической физике энтропия является мерой вероятности осуществления какого-либо макроскопического состояния. Энтропия может интерпретироваться как мера неопределённости (неупорядоченности) некоторой системы (например, какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации). 

Другой интерпретацией этого понятия является информационная ёмкость системы. В широком смысле, в каком слово часто употребляется в быту, энтропия означает меру неупорядоченности системы; чем меньше элементы системы подчинены какому-либо порядку, тем выше энтропия.

Простыми словами, энтропия – это мера беспорядка, хаоса. Например, Вы пригласили друзей на новогоднюю вечеринку, прибрались, помыли пол, разложили на столе закуску, расставили напитки. Одним словом, всё упорядочили и устранили столько хаоса, сколько смогли. Это система с маленькой энтропией.

Вы все, наверное, представляете, что происходит с квартирой, если вечеринка удалась: полный хаос. Зато у вас утром есть в распоряжении система с большой энтропией.

Для того, чтобы привести квартиру в порядок, надо прибраться, то есть потратить на это много энергии. Энтропия системы уменьшилась, но никакого противоречия со вторым началом термодинамики нет – Вы же добавили энергию извне, и эта система уже не изолированная.

Один из создателей статистической физики, Людвиг Больцман, для объяснения того, почему раньше значение энтропии было ниже, чем сейчас, выдвинул гипотезу, согласно которой видимая Вселенная представляет собой флуктуацию в некоторой равновесной (с низкой энтропией) системе.

В этом случае направление времени должно совпадать с направлением изменения энтропии, возвращающим её к равновесному значению. Большинство физиков не согласилось с Больцманом, посчитав, что в случае справедливости его гипотезы размеры такого мира не должны были бы превышать размеры Галактики или Солнечной системы.

Однако статистическая интерпретация термодинамики может (в некотором смысле) снять выделенность направления времени в термодинамике и соотнести её с квантовой теорией поля. Последняя может получиться из статистической механики посредством замены обратной температуры на мнимое время.

"Термодинамика – это единственная физическая теория общего содержания, относительно которой я убеждён, что в рамках применимости её основных понятий она никогда не будет опровергнута", – так говорил Альберт Эйнштейн о термодинамике. Хотя переход к мнимому времени и снимает вопрос о направлении времени в термодинамике, одновременно он поднимает множество других, присущих квантовой теории поля.

Новая работа учёных не решила проблему стрелы времени. Их работа не в состоянии объяснить, почему, например, распавшиеся радиоактивные ядра не собираются вместе. По мнению ученых, может потребоваться большая работа для того, чтобы свести эти вопросы к задаче о гравитационном взаимодействии в простой системе, рассмотренной авторами исследования.

Источник: ufostation

Комментариев нет:

Отправить комментарий